24 research outputs found

    Seabird species vary in behavioural response to drone census

    Get PDF
    This is the final version of the article. Available from the publisher via the DOI in this record.Unmanned aerial vehicles (UAVs) provide an opportunity to rapidly census wildlife in remote areas while removing some of the hazards. However, wildlife may respond negatively to the UAVs, thereby skewing counts. We surveyed four species of Arctic cliff-nesting seabirds (glaucous gull Larus hyperboreus, Iceland gull Larus glaucoides, common murre Uria aalge and thick-billed murre Uria lomvia) using a UAV and compared censusing techniques to ground photography. An average of 8.5% of murres flew off in response to the UAV, but >99% of those birds were non-breeders. We were unable to detect any impact of the UAV on breeding success of murres, except at a site where aerial predators were abundant and several birds lost their eggs to predators following UAV flights. Furthermore, we found little evidence for habituation by murres to the UAV. Most gulls flew off in response to the UAV, but returned to the nest within five minutes. Counts of gull nests and adults were similar between UAV and ground photography, however the UAV detected up to 52.4% more chicks because chicks were camouflaged and invisible to ground observers. UAVs provide a less hazardous and potentially more accurate method for surveying wildlife. We provide some simple recommendations for their use.We thank T. Leonard and the Seabird Ecological Reserves Advisory Committee for permission to work at Witless Bay, the Canadian Wildlife Service for permits to work at Newfoundland and Nunavut and the Government of Nunavut for permits to work in Nunavut. Newfoundland and Labrador Murre Fund, Bird Studies Canada and the Molson Foundation directly funded the work. An NSERC Discovery Grant, the Canada Research Chair in Arctic Ecology and Polar Continental Shelf Project also helped fund the project. We thank T. Burke, G. Sorenson, T. Lazarus and M. Guigueno for their help and J. Nakoolak for keeping us safe from bear

    Relationships between egg-recognition and egg-ejection in a grasp-ejector species

    Get PDF
    Brood parasitism frequently leads to a total loss of host fitness, which selects for the evolution of defensive traits in host species. Experimental studies have demonstrated that recognition and rejection of the parasite egg is the most common and efficient defence used by host species. Egg-recognition experiments have advanced our knowledge of the evolutionary and coevolutionary implications of egg recognition and rejection. However, our understanding of the proximate mechanisms underlying both processes remains poor. Egg rejection is a complex behavioural process consisting of three stages: egg recognition, the decision whether or not to reject the putative parasitic egg and the act of ejection itself. We have used the blackbird (Turdus merula) as a model species to explore the relationship between egg recognition and the act of egg ejection. We have manipulated the two main characteristics of parasitic eggs affecting egg ejection in this grasp-ejector species: the degree of colour mimicry (mimetic and non-mimetic, which mainly affects the egg-recognition stage of the egg-rejection process) and egg size (small, medium and large, which affects the decision to eject), while maintaining a control group of non-parasitized nests. The behaviour of the female when confronted with an experimental egg was filmed using a video camera. Our results show that egg touching is an indication of egg recognition and demonstrate that blackbirds recognized (i.e., touched) non-mimetic experimental eggs significantly more than mimetic eggs. However, twenty per cent of the experimental eggs were touched but not subsequently ejected, which confirms that egg recognition does not necessarily mean egg ejection and that accepting parasitic eggs, at least sometimes, is the consequence of acceptance decisions. Regarding proximate mechanisms, our results show that the delay in egg ejection is not only due to recognition problems as usually suggested, given that experimental eggs are not touched significantly more often. Thus, the delay in egg ejection is mainly the consequence of a delay in the decision to eject, probably triggered by mechanical constraints imposed by eggs that are harder to eject (i.e. larger). Our results offer important information on the relationships between recognition and ejection and contribute to a better understanding of host defences against brood parasites.Financial support was provided by the Junta de Andalucía (research project CVI-6653). JDI is funded by a postdoctoral contract (TAHUB-104) from the “Andalucía Talent Hub” program (co-funded by the European's Union Seventh Framework Program Marie Skłodowska-Curie actions (COFUND) and the regional Government of Andalucía)
    corecore